

Metabolomica e Lipidomica Untarget,

The world leader in serving science

Untargeted Metabolomics Takes the Lead

Thermo Scientific™ MS instruments included: Thermo Scientific™ Q Exactive™ MS, Thermo Scientific™ Q Exactive™ Plus MS, Thermo Scientific™ Q Exactive™ HF MS, Thermo Scientific™ Orbitrap ™ Fusion Tribrid MS, Thermo Scientific™ Orbitrap™ Fusion Tribrid MS, Thermo Scientific™ TSQ Quantiva™ Quadrupole MS

SCIENTIFIC

Untargeted Metabolomics: Challenges

Thermo Fisher

High Quality Data for High Quality Results

 Complex matrix Differentiate similar masses Fine isotopic pattern 	 Identification of unknowns Narrow mass tolerance Mass stability from peak to peak and run to run 	 Scan-to-scan consistency Injection-to-injection reproducibility Robustness over extended time periods
High	Mass	Instrument
Resolution	Accuracy	Performance

Stable Mass Accuracy from Scan to Scan Across the Peak

Orbitrap MS provides confidence in peak detection

Excellent Mass Accuracy Across the Molecular Weight Range

Metabolites identified from human plasma and verified against an authentic standard

Orbitrap MS delivers accurate mass measurements for all metabolites

SCIENTIFIC

Orbitrap MS: Unmatched Resolution

High Orbitrap MS resolving power for correct identification of isomeric and isobaric species

SCIENTIFIC

Mass Resolution and Scan Speed

Thermo Fisher SCIENTIFIC

Higher Confidence For Unknown Extractable & Leachable Analysis

Experiment vs. Theory for M+2

- Fine isotope structure data was compared with simulated spectrum for the predicted elemental compositions
- Only one out of the 6 predicted elemental compositions for M0 also matched M+2 fine isotope structure with the data
- The selected composition along with MS/MS fragment analysis allowed structure elucidation for this unknown extractable.

Selective Component Identification In Complex Matrices

LC-MS Analysis Of Flavonoid Conjugates In Orange Juice

- The fine isotope structure obtained was utilized as a fingerprint for selecting compounds having C/O ratio between 1.5 and 3.
- The detected peak lists were exported as an inclusion list for subsequent MSⁿ characterization.
- 128 putative flavonoid conjugates were detected in orange juice matrix containing over 4,000 compounds.

ThermoFisher

SCIENTIFIC

Why Orbitrap Is Naturally A Better Tool

Higher resolution can view more metabolic peaks

Data courtesy Stanford University

High Resolving Power Increases Metabolome Coverage

Human plasma metabolites (negative mode)

Why Orbitrap Is Naturally A Better Tool (5)

Great reliability and linearity is a must for quantitation

Lipid Nomenclature: Glycerophospholipids

Thermo Fisher SCIENTIFIC

Resolving Isobaric Species Improves ID and Quan

Thermo Fisher

Confident Identification of Low Abundant PS Species

Thermo Fisher

LipidSearch Batch Data Processing and Quantitation

Lipid Molec key	Ion key	Grade	Polarity	BaseRt	Obs Mz	Delta(m/z)	Delta(ppm)	Ion Formula	Area	Area RSD
PE(18:1D7/15:0)	-H	A	N	10.3064	709.5532	0.0013	1.8211	C38 H66 O8 N1 P1 D7	5.629E06	5.753E0
PE(18:1D7/15:0)	-H	Α	N	10.3064	709.5537	0.0018	2.5224	C38 H66 O8 N1 P1 D7	5.894E06	2.177E0
PE(18:1D7/15:0)	+H	В	P	10.3064	711.5661	-0.0003	-0.4384	C38 H68 O8 N1 P1 D7	2.599E07	3.960E0
PE(18:1D7/15:0)	+H	C	P	10.3064	711.5655	-0.0010	-1.3456	C38 H68 O8 N1 P1 D7	2.429E07	4.482E0

Processing Steps:

- 1. Search each data file
- 2. Merge the search results Pos. and Neg. ion
- 3. Report includes ID'sa) Estimated Quan (IS) orb) Rel. Amounts (no IS)

Triacylglycerol Lipids in Control Non-Diabetic Human Serum – Orbitrap Fusion MS

Resolving Isobaric TAGs with Ultra-high Resolution

Accurate ID and Quan Made Possible by Ultra-high Resolution

Thermo Fisher SCIENTIFIC

Unique Features of Orbitrap Fusion Lumos MS – A Tribrid Orbitrap Mass Spectro

UVPD Implementation (Class 1 Laser System)

Compact Footprint

- UVPD source is embedded inside the instrument, directly connected to the dual-pressure linear ion trap
- UVPD source employs a 213 nm laser with 2.5 kHz repetition rate delivering >1.2 µJ/pulse
- UVPD is a field upgradable option

PRID

UVPD For Comprehensive Lipid Characterization

Locating Double Bonds

- HRAM UVPD MS² spectrum of [M+Li]⁺ precursor ions of TG 16:0/16:0/18:1
- Fragments identify acyl chains
- UVPD unique fragments identify location of double bonds within the acyl chains

ASMS 2017, WOD 03:10 pm : Reid G.et al.

Questions?

Proteomics Analysis with Orbitrap

Leopoldo Dimiziani Thermo Fisher Scientific Verona 12/12/2017

The world leader in serving science

Omics Studies – the Link between Genotype and Phenotype

Proteomics is Not Genomics

- Proteomics is not genomics where a single, whole genome sequencing experiment provides a relatively accurate picture of the genomic aspects of biology
- Proteomics is (was?) complicated, expensive and time-consuming, we have been forced to limit the number of samples we process and restrict ourselves to a static view of biology
- We have been looking at *snapshots*, when we really want to see *dynamics* as biology changes over time, across many samples
- We want to see the important differences between closely related biological states, such as the stages of cellular development and differentiation or the cellular response to therapeutic intervention at a protein, PTM, or even proteoform level. And we want to quantify them

- · Molecular changes in the life cycle of plants and animals
- · Comparison of normal and diseased tissues in animal and plants
- Study of molecular changes associated with particular genotypes
- Understanding the impact of the environment on species separated by, or located in, different geographies
- Understanding the evolution of species

All of these require the ability to measure multiple conditions or in other words measure over a time

What Are Biologists Researching?

What Are Biologists Researching?

Requires 100 quantitative protein comparisons (10 development stages x 2 mutants x 5 biological replicates/flies)

Observing 3500 proteins quantitatively using label-free technique requires: 100 injections with 180 min gradients = **13 days instrument time**

Results: 350,000 protein detection events with 80% reproducibility between runs results in an overlap of <<2000 proteins that are reproducibly observed

High Quality Data for High Quality Results

 Differentiate similar masses Isobaric species Fine isotopic pattern 	unknowns Narrow mass tolerance Mass stability from peak to peak and run to run 	 Scan-to-scan consistency Injection-to-injection reproducibility Robustness over extended time periods 		
High	Mass	Instrument		
Resolution	Accuracy	Performance		

The Industry's Leading Portfolio of MS Solutions

Thermo Fisher SCIENTIFIC

Thermo Scientific[™] Q Exactive[™] Series Portfolio for Proteomics

Thermo Scientific™ Q Exactive™ MS

- · Orbitrap analyzer
- Mass Range *m/z* 50 6000
- Mass Accuracy <1ppm
- Max. Mass Resolution >140,000
- Scan speed up to 12Hz
- Spectral Multiplexing
- Polarity switching <1 sec

Thermo Scientific™ Q Exactive™ Plus MS

- Orbitrap analyzer
- Mass Range *m/z* 50 6000
- Mass Accuracy <1ppm
- Max. Mass Resolution >140,000
- Scan speed up to 12Hz
- Spectral multiplexing
- Polarity switching <1 sec
- Advanced Quadrupole Technology (AQT)
- Advanced Active Beam Guide (AABG)
- Opt. Enh Res.Mode (280k)

Thermo Scientific™ Q Exactive™ HF MS

- Ultra High Field Orbitrap analyzer
- Mass Range *m/z* 50 6000
- Mass Accuracy <1ppm
- Max. Mass Resolution >240,000
- Scan speed up to 18Hz
- Advanced Quadrupole Technology (AQT)
- Advanced Active Beam Guide (AABG)
- Spectral Multiplexing
- Polarity switching <1 sec

Thermo Scientific™ Q Exactive ™ HF-X MS

- Ultra High Field Orbitrap analyzer
- Mass Range *m/z* 50 6000
- Mass Accuracy <1ppm
- Max. Mass Resolution >240,000
- Scan speed up to 40Hz
- High capacity transfer tube
- Electrodynamic ion funnel
- Advanced Quadrupole Technology (AQT)
- Advanced Active Beam Guide (AABG)
- Spectral Multiplexing
- Polarity switching <1 sec
- Advanced ddHCD algorithm

VALUE

Q Exactive Plus/HF Mass Spectrometer

Key Technologies of Q Exactive HF MS

Q Exactive HF MS

Key Technologies

- Ultra-High-Field Orbitrap
 - Up to 18 Hz and standard 240k resolution
- Smaller Size
 - 1.8x frequency at the same voltage
 - 1.8x higher resolution over standard Orbitrap
 - New lenses for focusing ions in to the Orbitrap entrance
- 32 msec transient for fastest MS/MS data and max scan speed

Standard Orbitrap Analyzer & Ultra-High-Field Orbitrap Analyzer- Real Size Cutaways

STANDARD Orbitrap™ Analyzer

Thermo Scientific[™] LTQ Orbitrap Classic/XL/ Discovery /Velos (Pro) MS Thermo Scientific[™](Q)Exactive Plus[™] MS Thermo Scientific[™] Exactive Plus EMR MS

HIGH FIELD Orbitrap Analyzer

Thermo Scientific[™] Orbitrap Elite[™] MS

ULTRA-HIGH-FIELD Orbitrap Analyzer

Thermo Scientific[™] Orbitrap Fusion[™]/Lumos [™] MS

Thermo Scientific[™] **Q Exactive HF[™]/HF- X** [™] **MS**

Thermo Fisher SCIENTIFIC
Q Exactive Plus MS: Specifications

Scan rate	12 Hz
Max resolution	140K at m/z 200 (280k optional)
Quad isolation	Step-less from full mass range down to 0.4 amu
Mass Accuracy	3 ppm external, 1 ppm internal
Dissociation	Source CID, HCD
Multiplexing	Up to 10 precursor ions
Detectors	Orbitrap
Polarity Switching	1 sec cycle time (@ RES 35k)
Scan Functions	FS: Full Scan, AIF: All Ion Fragmentation, SIM: Selected Ion Monitoroing, PRM: Parallel Reactin Monitoring, DIA: Data Independent Acquisition, ddHCD: data dependent HCD
Options	Intact Protein Mode

Q Exative HF MS: Specification

Unmatched Analytical Performance

240,000 Resolution for best selectivity

18 Hz for maximum MS/MS scan speed

Intact Protein Mode for best S/N of intact proteins

Comparison of Q Exactive Plus MS and Q Exactive HF MS

More IDs with shorter Gradients

Thermo Fisher

Same Identifications with Half the Time

Thermo Fisher

What if I am sample limited?

Q Exactive HF™ 60 min gradient

Q Exactive HF-X – new architecture

SCIENTIFIC

Improvement of sensitivity – direct infusion

Electrometer currenInjection times

Ion intensities

ASMS'17: TP 389, T.N. Arrey et al. New innovations implemented on the Q Exactive HF mass spectrometer.

Thermo Fisher

Sensitivity and Linear Dynamic Range in Quantitation

Analysis of Intact Trastuzumab under Native Conditions in HMR Mode

Improved S/N ratio on the Q Exactive HF-X by a factor of ~5-10.

SEC-LC/MS analysis of intact Trastuzumab monoclonal antibody using Acclaim SEC column, 4.6 x 300 mm, 300 μ l/min flow rate, 50 mM ammonium acetate. Full MS, HMR mode, m/z 2500–8000, resolution setting 30k, 10 μ scans. Spectra show an average of 3 scans (10 μ scans each).

Optimized Scan Matrix

- Brighter ion beam, reduced scan overhead, and accelerated HCD (aHCD) is boosting acquisition speed
- Advantage for both MS and MS/MS mode
- Fast and high quality MS/MS acquisition up the 40 Hz with new 16 msec transient (7,500 resolution setting)

Thermo Fisher

SCIENTIFIC

22

Ultra Fast MS/MS Scan Speed > 40 Hz

Protein identification faster than ever

- Q Exactive Plus MS 120 min
- Q Exactive HF MS 60 min
- Q Exactive HF-X MS 30 min

Sample: 1 ug Pierce HeLa digest

- Maximizing protein identifications
- Same protein identifications in half the analysis time
- Faster, with same high quality results

ASMS'17: TP 389, T.N. Arrey et al. New innovations implemented on the Q Exactive HF mass spectrometer.

From Discovery to Quantification - do it all with a Q Exactive

Thermo Fisher SCIENTIFIC

The Power of Q Exactive to Access the Low-abundant Proteins

*Yeast cellular protein copy numbers are from Weissman and co-workers, Nature, 2003, 16, 737-41.

Low-abundant Protein Identified from Low Sample Load

High confidence identification from 10 ng of Yeast Digest

Peptide of YOR020C, 149 copy number, identified from 10 ng yeast digest

Thermo Fisher

Q Exactive raises the challenge in discovery proteomics to the next level – identifying the proteins that matter.

Most Abundant

Precursor intensity of identified peptides (normalized to the most intense peak)

From Discovery to Quantification - do it all with a Q Exactive

Thermo Fisher SCIENTIFIC

Moving Beyond Qualitative Proteomics

Problem: Quantitative information about expression level of a protein is essential to understanding its biological role in response to change or disease.

Add another dimension to any experiment by determining the relative abundance of each identified protein

Alterations in expression can reveal a meaningful biological pattern not apparent in a pure identification experiment, which provides only a list of detected proteins

Label Free Quantitation

Several well established pipelines for the quantitation of label-free data from a data dependent (or DDA informed DIA experiment) exist. Among these:

Label Free

- Multiple LC/MS Runs
- Compare a few conditions
- Requires replicate sample material

Thermo Fisher

Label Free Quantitation

Thermo Fisher SCIENTIFIC

Improving Quantitation Throughput: SILAC

Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

- Low variation between samples
- Requires Hi-Res Mass Spectrometry
- Compare up to 3 conditions
- Applicable to cell culture
- Peptide ID not required
- Geiger T., et al, Nature protocols(2011):147-157

SILAC Quantitation

Problem:

Increases MS1 Spectral Complexity

High resolution and intelligent precursor selection (i.e. selection of only one SILAC labeled peptide per pair or triad) is required for best quantitative results

Problem: Requires cell labeling in culture

Proteins must be able to be metabolically labelled and thus is not suitable for all organisms/conditions

With SILAC began a trend towards increased multiplexing...

A Better Multiplexing Method– Isobaric Mass Tagging

- Less MS1 Complexity
- Increased Throughput
 - Concurrent MS analysis of multiple samples
 - · Less consumed samples and less instrument time
- Fewer Missing Values
 - · Identification and quantification achieved in a single run
 - · No worries about irreproducibility
- Sample Origin Flexibility
 - Samples can be derived from cells, tissues or biological fluids
- Increased Multiplexing
 - Compare more than 3 conditions
- Multiple Comparisons and Improved Statistics
 - Incorporate replicates with multiple conditions: doseresponse, time-course, multiple tissues, subcellular fractions, etc

Thermo Scientific Tandem Mass Tag (TMT) Isobaric Tag Family

TMT⁰ Method Development & SRM

- 13C and 15N labeled reporter
- Isotopes balanced between linker region and reporter region keeping all tags exactly isobaric
- Fragments by ETD or HCD
- Up to 10 different tags
- Other reactive tags :lodo TMT and Aminoxy TMT

The Multiplexing Revolution –Not Only Consumables...

Thermo Fisher SCIENTIFIC

High Performance Depends Upon High Resolution Instruments

A Real Example

Sample: Mouse mitochondrial extract untreated or treated with phosphatase inhibitor

Orbitrap Elite

- 75 um x 50 cm PepMap C18
- 210 min gradient: 250 min run
- 1 ug of sample on column

Thermo Poster Note : Liver Mitochondria Proteomics Employing High – Resolution MS Technology; J.Ho. et al

Ratio Distortion with Isobaric Multiplexing

Problem: Quantitation of low-abundance proteins in a complex background is distorted by co-isolated interfering precursor ions

iTRAQ Underestimation in Simple and Complex Mixtures: "The Good, the Bad and the Ugly"

Saw Yen Ow,[†] Malinda Salim,[†] Josselin Noirel,[†] Caroline Evans,^{†,‡} Ishtiaq Rehman,[‡] and Phillip C. Wright^{*,†}

TMT10plex and SPS MS³ for Quantitative Proteomics

Achieving accurate and precise quantitation using SPS MS³

Thermo Fisher

41 Company Confidential

Co-isolation of Interfering Ions Affects Accuracy

Results: Best possible accuracy and precision by reducing co-isolated interfering ions.

Orbitrap Fusion Tribrid Mass Spectrometer

Unmatched Analytical Performance

Revolutionary Performance

Exceptional Versatility

Unprecedented Usability

Orbitrap Fusion Tribrid Mass Spectrometer

Thermo Fisher

Orbitrap Fusion Tribrid Mass Spectrometer

Scan rate OTMS ²	18 Hz
Scan rate ITMS ²	20 Hz
Max resolution	500, 000 at m/z 195
Quad isolation	down to 0.4 amu
lon trap isolation	down to 0.2 amu
Mass Accuracy	3 ppm ext, 1 ppm int
Dissociation	CID, HCD, ETD, EThcD
MSn	Up to ${\bf MS^{10}}$ in ion trap or Orbitrap analyzer
Analyzers	Q, OTMS, ITMS
Detectors	Ion Trap, Orbitrap
Compact	1186 x 674 x 650 mm (w, d, h)

Unmatched Analytical Performance

500,000 Resolution to remove spectral interferences

CID/HCD/ETD/EThcD detected by the **Ion Trap or Orbitrap** analyzer at any level of MSⁿ for maximum experimental flexibility

Powered by the new **Dynamic Scan Management** architecture that ensures efficient operation of the mass spectrometer

Orbitrap Fusion Lumos Tribrid Mass Spectrometer

Unmatched Analytical Performance

Revolutionary performance

Exceptional versatility

Unprecedented usability

Highest sensitivity

Orbitrap Fusion Lumos Tribrid Mass Spectrometer

Improved Low Level Quan: Ubiquitinated Peptides

K-GG Quantifiable Peptides

TMT10 Quantitation of Ubiquitinated Peptides

- Human HTC116 cells were treated with a proteasome inhibitor (Bortezomib) for 16 h and analyzed with TMT 10-plex (5 treated vs. 5 untreated)
- Two fractions were prepared
 - With higher amount
 - With lower amount
- 25-73% more quantifiable peptides

<u>ASMS Lecture: Rose et al.</u> Isobaric labeling enables 10-Plex quantitative analysis of ubiquitylated peptides: A diagnostic ion to improve identification and quantification
SPS MS³ Quantification on Orbitrap Fusion Lumos MS

Results: Best possible accuracy by reducing co-isolated interferences.

TMT SPS MS³ Publications Have Very High Impact

Thermo Fisher SCIENTIFIC

>500,000 Resolution on Orbitrap Fusion MS

Dynamic Scan Management Ensures Efficiency

Dynamic Scan Management Ensures Efficiency

Ion Trafficking and Dynamic Scan Management

Speed = Many More Points Across LC Peak

1 ug HeLa, 140 min run

Protein Groups

1 ug HeLa

ETD versus CID

ETD

- electron transfer surpasses internal heating
- rapid bond cleavage (no energy dissipation)
- random fragmentation of peptide backbone
- · leaves labile bonds like from PTMs intact
- N-C α bond cleavage yields c- and z-ion
- preferable charge state z > 2

Conventional (resonant) CID

via several collisions with Helium precursor ion is internally heated
preferences for weak bond cleavages
nearby selected amino acids (E, D, P) backbone cleavage is preferred
b- and y-ions (and internal fragments)

best fragment spectra from 2+ ions

Reagent/Internal Calibrant Source

Discharge Ion Source Detail

New Front Reagent Source: ETD and Internal Calibration

Electron Transfer Dissociation

Advanced PTM Analysis

- More than one glycan attached at a single site. Can be up to 100 glycans.
- Difficult to detect by MS in the presence of non-glycopeptides

Huge glycopeptide impact: Four publications, including PNAS, JBC, and Anal. Chem.

Glycosylation profile and site occupancy cannot be predicted!

Modes of MS Operation for Glycoproteomics

FT ITMSⁿ (CID)

General Glycan Sequencing

FT ITMSⁿ (ETD) Glycopeptide Sequencing and Glycosite ID

Unmatched Analytical Performance

Glycan/Glycopeptide Sequencing FT ITMSⁿ (HCD)

Glycopeptide Detection/Sequencing FT FTMS² (HCD) pd-CID/ETD/HCD

Isobaric Glycopeptide Quantification FT ITMS² (ETD) SPS MS³ HCD

Glycopeptide Sequencing Using Y1 Ion FT FTMS² (HCD) ITMS³ CID

Ultimate in Flexibility: HCDpd "Any MS2"

HCD-pd-(CID+ETD)

HCD for selective trigger ETD for peptide sequencing CID for glycan sequencing Wu et al., Anal. Chem., Just Accepted

> **Thermo Fisher** SCIENTIFIC

Subscriber access provided by HEALTH CANADA

Article

A novel LC-MS product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides

> Sz-Wei Wu, Tsung-Hsien Pu, Rosa Viner, and Kay-Hooi Khoo Anal. Chem., Just Accepted Manuscript • Publication Date (Web): 05 May 2014

Improving ETD-SPS Quantification of Glycopeptides

Synchronous Precursor Selection

Internal Calibration: LC/MS of Omeprazole Metabolites

Internal Calibration of MS and MS² scan

EThcD

Glycopeptide Sequencing Using EThcD

Intact Protein Mode Principles of Operation

- Reduced pressure in the
 IRM>CTRAP>Orbitrap region
- Calibration of ion transfer at reduced pressure
- Push-button operation once calibrated
- Can be used via Tune or in the Method (Global Parameter)
- Good for signal conservation with longer transients necessary to obtain isotopic resolution of large intact proteins 25-50kDa
- Unnecessary for Intact IgGs
 analyzed at low resolution

Standard Pressure Mode

Intact IgG: Seven Major Glycosylated Forms

41+: Higher Resolution Reveals Multiple Isoforms

ThermoFisher SCIENTIFIC

ThermoFisher SCIENTIFIC

Thermo Fisher SCIENTIFIC

Top Down MSⁿ of Carbonic Anhydrase

Thermo Fisher SCIENTIFIC

ThermoFisher SCIENTIFIC

Innovation Applied
Pharma & Tox
Alla ricerca della Massa esatta
The world leader in serving science

Resolution and Mass Accuracy

Definita come la capacità di riuscire a distinguere due ioni aventi rapporti m/z diversi.

All'aumentare della risoluzione aumenta la capacità di distinguere e misurare ioni con segnali m/z anche molto vicini

SCIENTIFIC

3
Resolution and Mass Accuracy

L'ACCURATEZZA

nella misura di massa, ovvero la differenza tra la massa ottenuta sperimentalmente e quella teorica

Esempio: Molecole Isobariche

Risoluzione e accuratezza

Thermo Fisher SCIENTIFIC

Thermo Fisher SCIENTIFIC

Innovation Applied

La tecnologia Orbitrap[™] applicata alla LCMS

The world leader in serving science

nello sito produttivo di Brema venne quindi prodotto l' Orbitrap

...ed il segnale è elaborato dalla Fourier-transform

In breve Orbitrap significa:

- Accuratezza di massa e sua stabilità
- Sensibilità
- Range dinamico
- Acquisizioni Full Scan
- Analisi retrospettiva

